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Abstract 
A long-running difficulty with conventional game theory has been how 

to modify it to accommodate the bounded rationality characterizing all 
real-world players. A recurring issue in statistical physics is how best to 
approximate joint probability distributions with decoupled (and therefore 
far more tractable) distributions. It has recently been shown that the 
same information theoretic mathematical structure, known as Probability 
Collectives (PC) underlies both issues. This relationship between statis- 
tical physics and game theory allows techniques and insights &om the 
one field to be applied to the other. In particular, PC provides a formal 
model-independent definition of the degree of rationality of a player and 
of bounded rationality equilibria. This pair of papers extends previous 
work on PC by introducing new computational approaches to effectively 
find bounded rationality equilibria of common-interest (team) games. 

1 INTRODUCTION 
The fields of statistical physics, game theory, and distributed control/optimization 
share one fundamental characteristic: they are all concerned with how the prob- 
ability distribution governing a distributed system is related to the function& 
that it optimizes. This shared characteristic provides the basis for a mathe- 
matical language for translating many of the concepts of those fields into one 
another. This mathematical language is known as Probability Collectives (PC) 
[l, 2 ,3 ,4 ,  5, 61. By allowing us to transfer theory and techniques between those 
fields, it provides a means of unifying them. 

This pair of papers introduces computational techniques fiom PC for effi- 
ciently finding bounded rational equilibria of noncooperative games. The iirst 
paper starts with a review of PC and how to use it to formalize bounded ra- 
tionality [7]. Also in that paper are a review of two of the previously explored 
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techniques for finding bounded rational equilibria, Brouwer updating and Near- 
est Newton updating. After this that paper introduces iterative focusing, a new 
set of techniques for finding full rationality equilibria. 

Due to space limitations, several other schemes for finding bounded rational 
equilibria could not be presented in that first paper. They are instead introduced 
in this second paper. This second paper also shows how to extend all of the 
approaches for finding equilibria (from both papers) to  the case of uncountable 
move spaces of the players. Some issues that arise in practice when running 
these algorithms are also discussed here. 

The version of Probability Collectives considered in this paper, involving 
product distributions, is called “Product Distribution” (PD) theory[l]. It’s 
important to note that PD theory also has many applications in science beyond 
those considered in this paper. For example, see [3, 4, 8, 9, 10, 5, 6, 111 for 
work concerning distributed control and to distributed optimization. See also 
[12, 13, 101 for work showing, respectively, how to use PD theory to improve 
Metropolis-Hastings sampling, how to relate it to the mechanism design work 
in [14, 15, 16, 171, and how to extend it to continuous move spaces and time- 
extended st rat egies. 

Throughout these papers 6 functions are either Dirac or Kronecker as ap- 
propriate, integrals implicitly have a measure appropriate to the cardinality of 
the underlying space, and 0 is the Heaviside step function. 

2 Variations of Previous Schemes and Practical 
Issues 

In this section we first present some of the salient equations from [7] for com- 
pleteness. We then show how to modify the Monte Carlo process used in parallel 
Brouwer updating to avoid the “thrashing” problem. Next we present some al- 
ternatives to Maxent Lagrangians for the case where the ultimate goal is finding 
argmin,G(z), i.e., when optimizing the game reduces to  a minimization prob- 
lem. We end with a discussion of issues that arise in practice. 

2.1 Salient Equations 
The “Maxent” or “qp” Lagrangian discussed in [7] is 

having minimizing product distribution q given by 

qi(zz) 0: e-Eq-.(G14. (2) 

Steepest descent of the Maxent Lagrangian forms the basis of the Nearest New- 
ton algorithm. Direct application of the equations that minimize it form the 



basis of the Brouwer update rules. The “pq” Lagrangian is instead minimized 
by the the product of the margin& of the Boltzmann distribution f l .  

These and other update rules are described in [7], and can all be written 
as multiplicative updating of q. The following is a list of the update ratios 
~~,i(xi) E qj”(x i ) /q: (x i )  of some of those rules. In all of these FG is a proba- 
bility distribution over x that never increases between two x’s if G does (e.g., 
a Boltzmann distribution in G(x)).  In addition const is always a scalar that 
ensures the new distribution is properly normalized and LY is a stepsize.’ 

Gradient descent of qp distance to FG: 

Nearest Newton descent of qp distance to FG: 

Brouwer updating for qp distance to FG: 

p q t  ( M F C l  I Z i )  

9: ( x i  1 const x 

Importance sampling minimization of pq distance to FG(z): 

(5) 

Iterative focusing of 4 with focusing function FG(x) using qp distance 
and gradient descent: 

Eqt ( ~ [ F G ]  I xi) + In[ ‘ f ( z i )  

(7) 
-1 const 

1 - CY{ qt (xi 1 I-qto 

Iterative focusing of 4 with focusing function FG(z) using qp distance 
and Nearest Newton: 

l A s  a practical matter, both Nearest Newton and gradientrbased updating have to be 
modified in a particular step if their step size is large enough so that they would otherwise 
take one off the unit simplex. This changes the update ratio for that step. See [9]. 



Iterative focusing of 4 with focusing function FG(z) using qp distance 
and Brouwer updating: 

I terative focusing of 4 with focusing function FG(z) using p q  distance: 

Note that some of these update ratios are themselves proper probability distri- 
butions, e.g., the Nearest Newton update ratio. 

2.2 Modifications to the Monte Carlo Process of Parallel 
Brouwer 

As described in [7], parallel Brouwer updating can be subject to “thrashing”, 
in which each player’s update confounds the updates of the other players. The 
simplest way to mitigate this is by not having each player i jump all the way 
from its current distribution q, to the new one recommended by parallel Brouwer 
updating, 4:. Instead one can have each i only jump part way in the direction 
from q, to 4:. (This in fact is what is done in practice.) This subsection presents 
an alternative approach. 

To begin, note that we would not get any thrashing in parallel Brouwer if 
rather than the function Eq(G I z,), each agent i performed its update using 
E,(G 12,) for some distribution T that is independent of q .  The natural choice 
of T is exactly the distribution that q is designed to approximate well, namely 
the Boltzmann distribution ’. 

To implement this modification, we need to have all agents i simultaneously 
estimate their associated functions E,(G I z,) rather than Eq(G I z,). Precisely 
because q should approximate T well, we can do this using our Monte Carlo 
samples of q, simply by modifying how each agent uses those samples. The 
general idea is to use those samples of q as a proposal distribution for generating 
samples from T .  

As an example, we can use the samples of q to estimate the integral E,(G I 
2,) via importance sampling. To do this we write 

and then sample q,  using empirical averages across those samples to estimate 
both the quantity in the square brackets in the numerator of our integral and 

’Note that in doing this, we change the equilibrium distribution from that of 2. NOW it  is 
given by q,(z,) o( e-oEn(G12*) 
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the quantity in square brackets in the denominator. (Note that we only need to 
know 71 up to an overall normalization constant to  do this.) Under the original 
sampling scheme, for each of its possible moves z,, agent i forms the uniform 
average of the G values that arose when it made that move, and takes that 
average as its estimate of E,(G I 2%). Under the modified scheme, it would 
instead estimate the function E,(G 1 x,) with a weighted average of those G 
values. The weights would be the associated values x ( z ) / q ( ~ ) . ~  

Another way to estimate E,(G 1 z,) using samples generated from q would 
be via a Metropolis-Hastings random walk. Under this scheme q would be a 
proposal distribution, and the points it generates would be kept either if they 
raised r(z)/q(z), or, if not, if the flip of an appropriately weighted coin comes 
up heads. At the end of the Monte Carlo block, each agent i would form 
the uniform averages over the kept points, thereby forming an estimate of its 
function E,(G 12,) ‘. 

Integration of parallel Brouwer and the Metropolis-Hastings algorithm can 
be viewed other ways’than as a modifcation to parallel Brouwer updating. 
In particular, it can be viewed as a modification to standard optimization via 
simulated annealing. The modiiication is that the proposal distribution is dy- 
oamically updated in an “intelligent” way, rather than (as in the conventional 
simulated annealing algorithm) being pre-hed. This is the idea behind the 
Intelligent Coordinates algorithm [18]. 

In addition to mitigating the thrashing problem, the replacement of E,(G I 
2,) with E,(G I 2,) sometimes results in new equilibria that better capture 
inter-agent dependencies in G. In particular, they will sometimes avoid the 
problem of spurious equilibria that can arise with a Lagrangian over product 
distributions, in which the equilibinrm product distribution has high values for 
some z’s that have poor G values. 

As an example, say we have three agents all with binary move spaces, (0 ,  
1). Say that the 23 = 0 plane of G values is given by G(O,O, 0) = 1, G(0, 1,O) = 
G(l,O, 0) = .5, and G(1,1,0) = 0, while when 2 3  = 1, G(z) = .5, regardless 
of z1 and 2 2 -  So we would like to have the equilibrium distribution be biased 
towards (1 ,1,0) .  However in one eqdibrium of Eq. 2, agents 1 and 2 would have 
uniform distributions, giving a uniform distribution over their joint moves. This 
uniformity of q ( x l , q )  then means that agent 3 would not have any basis for 
choosing one or the other of its two moves: E,(G I 23) would be independent 
of 2 3 .  Accordingly, agent 3 would also choose a uniform distribution. The 
resultant product distribution would be uniform, and therefore would not be 
low over all 2’s with poor G values ‘. 

3Note that these weights can be communicated to all the agents by the same system that 
broadcasts G values to all the agents, if first all agents communicate q, values to that system. 

4Ref. (121 presents a detailed analysis of the use of samples of a product distribution to 
do MetropolisHastings sampling. That work does not directly concern the issue of optimiza- 
tion. Rather it concentrates on using Probability Collectives to improve the usual goal of the 
MetropolisHastings algorithm, namely sampling a provided probability distribution. 

51ntuitively, the problem is that the move spaces of the agents do not factor the joint 
move space in a way that is ualigned” with G. See [13, 101 for a discussion of how to use 
semi-coordinate transformations of the move spaces to circumvent this problem. 



Now consider the modified Monte Carlo process. In this new process agent 
3 chooses its move based on E,(G I 2 3 ) .  However since it is convex, 7r is 
most peaked for 2 3  = 0, unlike the equilibrium q under Eq. 2. So the values of 
E,(G I 2 3 )  now would distinguish between the two possible moves of 2 3 ,  biasing 
it towards the move 0. Similarly x1 and 2 2  would both be biased to equal 1. So 
our equilibrium distribution would be biased towards (1, 1, 0), which is exactly 
what we want. 

Note that schemes like gradient descent always have the same equilibrium as 
that of Brouwer updating if one replaces E,(G I xi) in thos schemes, whatever 
function one uses to replace E,(G I xi) (so long as it is the same function in 
both schemes). Accordingly, replacement of E,(G I xi) with E,(G I xi) may be 
beneficial to steepest descent algorithms, in addition to parallel Brouwer. 

2.3 Variants of Maxent Lagrangians 
Consider the use of iterative update rules for the q, in concert with Monte Carlo 
sampling of q. In such scenarios, at each stage of the iterative updating, for each 
of her moves E,, each player i has an empirical estimate of the distribution P (G I 
2, )  (and therefore of any distribution P(f(G) 1 2, )  for invertible f : R -+ W).  
Every player i uses her empirical estimate according to a pre-set algorithm - 
potentially varying from one player to the next - to determine how to update 
her distribution q,. Our task as system designers is to choose those pre-set 
algorithms in such a way that the ultimate goal of the updating is achieved as 
quickly as possible. 

In the update rules discussed above each empirical distribution is reduced 
to an expectation value which is then used to perform the update. m l e  this 
need not be the case in general, update rules based on expectation values form a 
very rich set, including many rules not investigated previously. This subsection 
introduces some such novel update rules that are based on expectation values. 

Both the qpKL Lagrangian and pq-KL Lagrangians discussed above had 
the target distribution be a Boltzmann distribution over G.  For high enough 
p, such a distribution is peaked near argmin,G(z). So sampling an accurate 
approximation to it should give an x with low G, if ,B is large enough. This 
is why one way to minimize G is to iteratively find a q that approximates the 
Boltzmann distribution, for higher and higher p. 

However there are other target distributions that grow larger as G grows 
smaller e.g., logistic functions of G, step functions (i.e., Heaviside functions) of 
G ,  etc. So one set of alternatives to the Lagrangians discussed above is to choose 
some alternative target distribution(s), and for each one find the q minimizing 
p q  or qp KL distance to it. 

Return now to the Maxent Lagrangian. Say that after finding the q that 
minimizes the Lagrangian, we IID sample that q ,  K times. We then take the 
sample that has the smallest G value as our guess for the 2 that minimizes G(z). 
For this to give a low 2 we don’t need the mean of the distribution q(G) to be 
low - what we need is for the bottom tail of that distribution to be low. This 



suggests that in the E(G) term of the Maxent Lagrangian we replace 

Q[K - J&’ q(x’)e[G(x) - G(x’)]] 
K 

4(x) + d x )  

This new multiplier of G is still a probability distribution over x. It equals 0 if 
G(x)  is in the worst 1 - K percentile (according to distribution q) of G values, 
and K-’ otherwise. So under this replacement the E(G) term in the Lagrangian 
equa-ls the average of G restricted to that lower d t h  percentile. For K. = K-’, 
our new Lagrangian forces attention in setting q on that outlier likely to come 
out of the K-fold sampling of q(G). 

As usual, one can use gradient descent and Monte Carlo sampling to min- 
imize this Lagrangian, taking care to account for q’s now appearing twice in 
the integrand of the E(G) term. Note that the Monte Carlo process includes 
sampling the &&ibution e[K- /  q(z‘)e[G(z)-G(z’)ll n as well as the 
ql. This means that only those points in the best n’th percentile are kept, and 
used for all Monte Carlo estimates. This may cause greater noise in the Monte 
Carlo sampling than would be the case for IC = 1. 

As an example, say that for agent i, all of its moves have the same value of 
E(G 1 x,), and similarly for ageat j, and say that G is optimal if agents i and j 
both make move 0. Then if we modify the updating so that agent i only considers 
the best values that arose when it made move 0, and similarly for agent j ,  then 
both will be steered to prefer to make move 0 to their alternatives. This will 
cause them to coordinate their moves in a way that improves the Lagrangian. 

A similar modifkation is to replace G with f(G) in the Maxent Lagrangian, 
for some concave nowhere-decreasing function f(.). This would distort G to 
accentuate those x’s with good dues. Intuitively, this will have the effect of 
coordinating the updates of the separate qI at the end of the block, in a way 
to help lower G. The price paid for this is that there will be more variance in 
the values of f ( G )  returned by the Monte Carlo sampling than those of G, in 
general. 

Note that if q is a local minimum of the Lagrangian for G, in general it 
will not be a local,minimum for the Lagrangian of f ( G )  (the gradient will no 
longer be zero under that replacement, in general). So we can replace G with 
f ( G )  when we get stuck in a local minimum, and then return to G once q gets 
away from that local minimum. In this way we can break out of local minima, 
without facing the penalty of extra variance. Of course, none of these advantages 
in replacing G with f ( G )  hold for algorithms that directly search for an x giving 
a good G(z)  value; x is a local minimum of G ( z )  * x is a local minimum of 

An even simpler modification to the E(G) term than those considered above 
is to replace G(x)  with 8[G(x) - K].  Under this replacement the E(G) term 
becomes the probability that G(x)  > K. So minimizing it will push q to x with 
lower G values. For this modified Lagrangian, the gradient descent update step 

f (G(x))-  
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adds the following to each qi(zi): 

In gradient descent of the Maxent Lagrangian we must Monte Carlo estimate 
the expected value of a real number (G).  In contrast, in gradient descent of this 
modified Lagrangian we Monte Carlo estimate the expected value of a single bit: 
whether G exceeds K.  Accordingly, the noise in the Monte Carlo estimation for 
this modified Lagrangian is usually far smaller. In addition, just like in descent 
of the Maxent Lagrangian, the Monte Carlo estimation for Eq. 11 is well-suited 
to a distributed implementation. 

In all these variants it may make sense to replace the Heaviside function with 
a logistic function or an exponential. In addition, in all of them the annealing 
schedule for K can be set by periodically searching for the K that is (estimated 
to be) optimal, just as one searches for optimal coordinate systems [19, 11. 
Alternatively, a simple heuristic is to have K at the end of each block be set SO 

that some pre-fixed percentage of the sampled points in the block go into our 
calculation of how to update q. 

Yet another possibility is to replace E(G) with the K’th percentile G value, 
i.e., with the K such that Jdz’ q(z’)@(G(z’) - K )  = n. (To evaluate the 
partial derivative of that K with respect a particular qz(zz) one must use implicit 
differentiation.) 

2.4 

There are a number of practical issues common to all the schemes elaborated 
above. The update rules given above are all completely distributed, in the sense 
that each agent’s update at  time t is independent of any other agents’ update 
at that time. Typically at any t each agent i knows q i ( t )  exactly, and therefore 
knows In[qi ( j ) ] .  However those update rules all involve conditional expectation 
values which often cannot be evaluated in closed form. As described above, one 
can circumvent this problem by having the expectation values be simultaneously 
estimated by all agents via repeated Monte Carlo sampling of q to produce a 
set of (x ,G(z))  pairs. Those pairs are used by each agent i to estimate the 
expectation values it needs (e.g., E(G I zi = j ) ) ,  and therefore how to update 
its distribution. 

Consider the case where we do need to use Monte Carlo to estimate condi- 
tional expected values of some f(z), and z is high-dimensional. In this scenario 
block-wise Monte Carlo sampling to estimate conditional expectation values can 
be slow. The estimates typically have high variance, and therefore require large 
block size L to get an accurate estimate. 

One set of ways to  address this is to replace the team game with a non- 
team game, Le., for each agent i have it estimate quantities based on a private 
utility gi rather than G (e.g., based on E(gi I zi = j )  rather than E(G I zi = j )  

Heuristics for improving the update rules 



'. Each such private utility is chosen so that the Monte Carlo estimates have 
much lower variance than those based on G, without having any bias [l, 131. 

As an example, say we are doing gradient descent of the Maxent Lagrangian. 
Replace the values of G(z) recorded by agent i in the Monte Carlo process with 
the values of g,(z) = G(x)  - D(z-%), where D(z-,) c( J dx: w(z:)G(x:, z-,) for 
weighting factors w, determined by how frequently 2: arose in the Monte Carlo 
process. This replacement speeds the convergence of the Monte Carlo process 
to accurate estimates of the true expectation values E(G I z,) [l]. Furthermore 
it can often be done with minimal communication overhead between the agents. 
Indeed, often it is easier to evaluate such a g,(z) than G(x) .  The worst case is 
where G(z:, z-,) must be explicitly reevaluated for each of the possible z:. Even 
there though, those extra re-evaluations are often not a large extra expense. This 
is because they can be used to augment the Monte Carlo samples of values of 
gz(x:) for z: # z, as well as those for z: = 2,. 

Another useful technique is to allow samples from preceding blocks to be 
reused. One does this by hst "aging" that data to reflect the fact that it 
was formed under a different q-, . For example, one can replace the empirical 
average for the most recent block k, 

with a weighted average of previous expected G's, 

for some appropriate aging constant n.7 
Typically such ageing allows L to be vastly reduced, and therefore the overall 

minimization of L to  be greatly sped up. For such small L though, it may be 
that the most recent block has no samples of some move z, = j. This would 
mean that G , , J ( k )  is undefined. One crude way to avoid such problems is to 
simply force a set of samples of each such move if they don't occur of their own 
accord, being careful to have the x-, formed by sampling q-% when forming 
those forced samples. 

There are numerous other techniques that are useful in practice. For ex- 
ample, typically one must use such techniques to decrease the step size in the 
descent rules (Le., gradient descent and Nearest Newton) as one nears the bor- 
der of Q. Similarly, often the non-descent update rules (e.g., Brouwer) can be 
improved by making only a partial "step" at each iteration, Le., by averaging 
the current q with the q given by the update rule as listed above, rather than 
by replacing it with that q. 

6Formally, this means that each agent i has a separate Lagrangian, for example formed 
from the Maxent Lagrangian by substituting gi for G. See [19] for the relation of this to 
bounded rational game theory. 

'Not all preceding G,, j (n)  need to be stored to implement this; exponential ageing can be 
done online using 3 variables per (i, j )  pair. 



3 Empty bins, uncountable x 
There are several circumstances in which naive empirical averaging of Monte 
Carlo samples to estimate update terms of the form E ( H  I z,) will not work. 
For example, consider the simplest situation, in which we have a finite number 
of agents and a finite move space for each agent. Even in this situation, if there 
are not enough Monte Carlo samples, it may be that for some potential move 
of some agent there are no instances in any of the Monte Carlo samples (in any 
of the blocks) in which that agent made that move. In that case, we cannot use 
empirical averaging to estimate the associated E ( H  I z,). As another example, 
say we have a large (but finite) number of Monte Carlo samples, but some agent 
has an uncountable number of potential moves. Then that agent will have no 
samples for almost all of its potential moves. 

3.1 Exploiting Supervised Learning 
All of these problems can be addressed by exploiting the fact that we are work- 
ing with a product distribution, in concert with the techniques from the field 
of supervised learning techniques (i.e., classification and regression) [20], which 
concern precisely the issue of estimating E ( H  I z,) from a finite set of Monte 
Carlo samples. As an example, consider the first problem case mentioned above, 
in which there a finite number of agents all with a finite number of potential 
moves, but we have too small a set of Monte Carlo samples to have samples of 
all moves for all agents. For this scenario each agent i must estimate E ( H  I z,) 
for all z, using a “training set” of Monte-Carlo-generated (z,, H )  pairs that does 
not extend over all 2,. This is a standard problem in supervised learning [20]. 
Often it can be addressed by extrapolating from those z, which did occur in the 
training set to infer estimates of E ( H  I 2,) for the other z,. Those estimates 
can then be used to form the updates.8 

Similar techniques can be used even when the x, are uncountable. Moreover, 
in general a supervised learning fit to the Monte Carlo data is parameterized by 
a finite set of numbers, and therefore for a finite number of agents those fits can 
be stored in a finite computer, regardless of the cardinality of the move spaces 
of the agents. However for uncountable move spaces we have the extra problem 
of how to store, update, and sample q, which is now a density function rather 
than a probability distribution. 

Fortunately, given the regression E ( H  I E,), there are several ways to update 
and sample q(z) without ever explicitly storing the values of q(z) for all possible 
z. By using such sampling schemes in concert with the regression scheme, we 
can implement Monte Carlo updating for all three of the problematic scenarios 
described above. As outlined in this section, the key is to write the update rules 
in terms of multiplicative update ratios giving the new q in terms of the old one, 
as in the list presented above. 

‘In general, whenever it can be applied, such extrapolation should also be used to improve 
the estimates of E ( H  I zi) for those xi values that do occur in the training set. 



3.2 Uncountable x and finite parameterizations of q 

For all of these update rules listed above, when x, is a compact subset of a 
Euclidean space, one can still numerically perform the update in the conven- 
tional way if the associated probability density function is replaced by a (finite- 
dimensional) paramaterization of it. The simplest way to do that is, in essence, 
by binning z,. This means that agent i now has a finite set of moves, one for each 
of its bins. The full density function is parameterized by the real numbers giving 
the probabilities agent i assigns to each of its bins, according to some preset 
rule. One example is where the probability density function has uniform density 
in each bin (as in Reiann integration). Another is where the density function 
is linearly increasing/decreasing across each bin,-in such a way khat-the density 
function is everywhere contikous (as in the trapezoidal rule for integration). 
Formally, such binning schemes are semi-coordinate transformations [lo, 61. 

With such a scheme, one first applies supervised learning techniques to the 
Monte Carlo samples to determine the regression E(H I 2,). For each bin j, 
having borders a3 and b3, one then numerically computes two integrals: 

The ratio of those two integrals determines the t imet  e,upected value of H 
conditioned on x, being in bin j. (For bins that are thin enough on the scale 
of variations in the regression and/or q ~ ( x z ) i  these integrations can be replaced 
by simply evaluating the integrands at the centers of the bins.) This then gives 
the expected H conditioned on x, being in bin j for all bins j. This is precisely 
what is needed to update of those bins’ probabilities, according to whichever of 
the update rules listed above one is using. 

Note that this scheme can be done even when the number of bins is far 
larger than the number of Monte Carlo samples. This contrasts with the case 
of estimating the conditional expectation value of H given bin j based only on 
averaging of all the Monte car10 samples that fall in that bin. Intuitively, using 
regression allows samples from neighboring bins to be used to help form the 
estimate. 

While some binning schemes can be quite sophisticated, sometimes it would 
be advantageous to use a merent  parameterization. Often this can be done in a 
way that replaces the regression algorithm with a density estimation algorithm, 
using the usual Bayesian equivalence of regression and density estimation. For 
example, choose the masking function F G ( ~ )  in Eq. 10 to be 8 ( K  - G ( x ) ) ,  
Evaluating such an update based on a set of Monte Carlo samples can be done 
with conventional probability density estimation algorithms [ZO]. One simply 
collects the subset of the samples for which G(z) < K ,  and runs the density 
estimation algorithm on those points to estimate the density at 2,. 

Intuitively, in this approach the Monte Carlo samples encode the probability 
density function qo. For a smooth density estimator, this scheme will also ensure 
q*(x,)  # 0 Vx,, thereby mitigating the problem that a statistical fluctuation of 
never picking x, in some Monte Carlo block would guarantee it is never picked 



in the future. Similar schemes can be used for non-step function choices of FG. 
For example, one can use the value FG(x) for each x in the Monte Carlo sample 
as a weighting factor for that sample in a kernel density estimator. 

3.3 Parameterless sampling 

One problem with parametric schemes like these is that since q is given by a 
set of explicitly stored real numbers, one is always limited in how finely one can 
capture q by the finiteness of one’s computer’s memory. More importantly, if 
one has many parameters (to capture q with high accuracy), then updates can 
be computationally expensive] since each parameter has to be updated in each 
iteration. For example, with binning, one has to go through the update rule for 
each bin. 

Alternative schemes use the regression E ( H  I z,) to apply any multiplicative 
update rule for uncountable 3: without any finite-dimensional parameterization 
of q. With such schemes, in each step the full density function given by an 
uncountable number of real numbers is implicitly updated (e.g., via gradient 
descent). However that density is never explicitly represented. Instead, all 
we ever explicitly do is sample it, potentially evaluating it at a finite number 
of points to do so. Intuitively, via our regression, the Monte Carlo samples 
themselves serve as our “parameteri~ation’~ of q(x). 

Define Rq,, 3 maxz,rq,2(z,). Then for any t > 1 we can generate a sample 
from qf if we can implement the following three-step procedure: 

1) Sample from 9f-l to get a point x i .  

2) Toss a coin with probability of heads 

rqt-1 ,i ( x i )  
Rqt-i,i 

3) If the coin came up heads, keep our x, as the desired sample of qt. Otherwise 
return to ( I ) . ~  

Note that this scheme will also work if we can only evaluate the values 
rqt-l, ,(x,) up to an overd  proportionality constant, so long as Rqt-i,, is rede- 
fined to include that constant. Similarly the scheme will work so long as Rqt-i,, 
in step (2) is replaced by any fixed quantity that is bounded below by the actual 
Rqt-1,*. So in practice we can set that value in step (2) to some small factor 
multiplied by the maximal value of over some set of values xi of rqt-i,z(xi). Ac- 
cordingly we can sample qt if we can sample qtW1, can evaluate A x rqt-i,z(3:,) 

gProof Since this three-step sub-sampling scheme is a stochastic process, it generates Z,’S 

according to some distribution ~(2,). So to prove that T = CZ:, it suffices to note that for any 

two values x,, xi, $$ = $&. QED 



for any particular z, and iixed (though perhaps unknown) constant A, and can 
evaluate a lower bound on A x Rqt-l,,. 

Performing this three-step procedure for all agents will give us a sample of 
the joint distribution qt. We then add that joint sample to the training set 
and form a new regression (to be able to calculate ~ ~ t , , ( z , ) ) .  We then use that 
new regression to find a lower bound on Rqt,z. This allows us to repeat the 
three steps, and thereby form the next update to q. Generalizing, if we set q1 
to some easily sampled distribution (e.g., the uniform distribution), and can 
always perform the stipulated regressions, then with our three-step procedure 
we have an iterative algorithm for sampling qt(z) = n, d(z) for all t. Then, at  
the end of the run, we use the hal joint samples as guesses for the solution z 
to our optimization problem. 

Say we are at iteration t, having formed samples of all of the qf for t' < t 
via the three-step procedure, and therefore having been able to evaluate Rqtl,, 
and T ~ ~ I , ' ( z , )  for any z,, t' < t. To employ the precise scheme outlined above 
to sample q: we would first sample q:, and then send that sample through t 
successive stochastic keep/reject steps. The probability of a rejection at each 
step in that chain is given by how small the ratio r $ ~ ~ ~ ~ ~ )  IS . for typical 5, 

generated by sampling q:. For large enough t ,  even if the rejection probability 
for each step in the chain is small, the probability of a rejection somewhere 
along such a chain - followed by starting all over with a new sample of q: - 
may be quite high. Accordingly, this three-step procedure might take a long 
time to actually generate the desired sample of q:. 

As an alternative, note that by hypothesis we can evaluate rqt' ,,(z,) Vz,, t' < 
t ,  up to a t'-dependent overall proportionality constant, which without loss of 
generality we set to 1. So write 

t-1 

q3.1) = 4f.(G) I-I Tqt+4 
t'=l 

As long as we are sure that the product on the righthand side is finite and never 
negative, we can employ a modif3ed version of our sub-sampling procedure. To 
do this define 

t-1 

In analogy to the earlier case, we can form an estimate of a (conservative lower 
bound) on Ci ({ qt' : t' < t})  by evaluating c, ( {qt' : t' < t} ,  zi) for many zi. 



As before, the first step of OUT procedure is to sample q j  to produce a sug- 
gested sample of q:. We then accept that suggested sample with probability 

ci({qtl : t' < t } ,  xz) 
Ci({Qt' : t' < t } )  

resampling q: if we reject the suggested sample. This gives us our desired sample 
of q,"(z,). Doing this for all z then gives our sample of qt(x). 

Exactly as before, such a sample of qt can be combined with our previous 
Monte Carlo samples to provide a training set for a supervised learning algo- 
rithm that forms a regression Eqt(H I 2,). We can use that to evaluate ~ ~ t , ~ ( x , )  
for any x,, up, to an overall proportionality constant. So we can evaluate the 
product c, ({ qt : t' < t + I), x,) for a large number of x,, and thereby estimate 
(a lower bound on) C,({qt : t' < t } ) .  This then allows us to generate a sample 
of the next distribution qtf l  by using subsampling. So we again have an itera- 
tive algorithm. However this one avoids the need for more than one keep/reject 
step in forming the sample of qt for any t. (The price paid for this is a more 
expensive numerical evaluation of the associated m a . )  

3.4 Including density estimation 
A remaining potential difficulty is that as q: gets more and more peaked, we 

might get a lot of rejections when we subsample, since the ratio c$iqt, t,>tl) 
will be very small for almost every point formed by sampling q:. More gen- 
erally, if we are only generating candidate x, by examining points generated 
by sampling q:, then we won't have reduced the overall computational burden 
in finding x with low G values compared to the simple process of sampling q: 
without any subsequent subsampling. 

We can address this problem by periodically using a density estimation d- 
gorithm to produce an estimate of the current distribution, an estimate that 
is easy to sample. We don't use that estimate directly instead of 4," however, 
since it won't exaclty equal q," in general. Instead, we use it as a proposal dis- 
tribution in importance sampling from q:. More precisely, at time step t ,  say 
we run a density estimation algorithm on our Monte Carlo samples to form a 
density t,"(x,) that both can be easily sampled and with high probability is a 
good approximation to 4,". Write 

qt' t'<t A) 

q f ( 4  Q(x*)  d,({qt' : t' < t } , 4 h )  (15) 

where 

Then define 



As usual, without loss of generality we can ignore any overall proportionality 
constants in the evaluations of d:(zi) and/or ci({qt' : t' < t},zi) (so long as 
the same constants appear in the evaluation of Di({qt' : t' < t}, G:,i)), and can 
replace the constant Di({qt' : t' < t}, $, i) with a lower bound on it. 

In the first step of the new version of our three-step procedure we generate 
a sample of $:(xi). 
to sample $(xi).) 

(In the original three-step procedure the analogous step was 
We then keep that sample with probability 

forming a new sample if the suggested sample is rejected. In this way .we can 
exactly sample the density function q:(zi). Moreover, assuming our density esti- 
mate is reasonably accurate, and that our lower bound on D,({qt' : t' < t} ,  ij:, i) 
is not too much lower than the actual d u e ,  the ratio giving our acceptance 
frequency will not be too small. 

In practice, we may want to exploit algorithms that combine the genera- 
tion of 4: from the training set and the sampling of that distribution. As an 
illustration, say zi is the set of r e d  ambers  between 0.0 and 1.0, and write 
the cumulative distribution function of q: as CDF,:. Then one way to form a 
sample of q:(z,) is to generate a point ti by uniformly sampling [O.O, 1.01, and 
then return the value [CDF,;]-l(&). This suggests an algorithm in which we 
first use our training set of Monte Carlo samples to form CbF,:,  an estimate 
of CDF,;. We then sample [O.O, 1.01 uniformly to produce ti, and return the 
value [CbF,:]-l(<i) .  

As an example of a rough, fast way to do this, say there are N separate 
zi values in our training set, the set of those values being written as {4}. 
D e h e  I ( 4 )  as the interval of all real numbers that are closer to 4 than to 
any other training set element. Also d e h e  the function int(zi) as the greatest 
integer below 2,. Then our algorithm for sampling (an estimate of) q:(zi) would 
consist of the following steps: 

.. 

A) Sample [O.O, 1.01 uniformly to generate ti. 

B) Sample uniformly from within the interval 1. 
Similar schemes can be used when zz is more than onedimensional, for example 
by substituting Voronoi cells about training set x, values for intervals about 
them. 

Say we are able to sample q;(xz) exactly, either by using subsampling of 
points generated from 4,' or by using a density estimate 4;. Then we can 
use the original three-step procedure recounted above to sample qf"(zz) = 
q;(z*)r,t,,(x). Similarly, to sample qT(z, )  for subsequent T > t + 1, we can 
use the modified version of the threestep procedure based on a product of 
~,~f,~(z,)'s. In the current context, this means we sample q:(z,), and then 



keep/reject those samples according to the ratios 

cz({qt' : t < t' < T } ,  xz) 
Cz({qt' : t < t' < T } )  

. 

Once T is so much larger than t that we start getting a lot of rejections, we can 
rerun our density estimation algorithm. 

3.5 Performing the needed evaluations 

Say we are at the t'th iteration, and assume we already have a full Monte Carlo 
sample of qt-l. We need to be able to evaluate Tqt-1,,(x,) to form a sample of qt 
using our three-step procedure. We can do this for any of the update rules listed 
above, so long as can calculate ln(qf-'(z,)), Eqt-l(1n(FG) I z,), E,t-i(ln(FG)), 
S(q;-l), s d x ,  E,t-l(ln(FG) I x,), and sdx, ln(q;-'(x,)). The first two of these 
depend on z,, and the last four are averages over all x,.l0 

We can perform our calculations as follows: 

i) Assume that we can evaluate q;-l(x,) Vx,, just as we are able to sample qt-'. 
That takes care of the first term. 

ii) As usual, to estimate I3,t-l (ln(FG) I xi), apply any handy supervised learning 
algorithm (e.g., Gaussian nearest neighbor averaging) to the training set of 
(xi, ln(FG(z))) pairs given by the Monte Carlo samples of qt-l. 

iii) Given our supervised learning algorithm, use numerical integration to esti- 
mate s d x ,  E,t-l(ln(FG) 1 xz). In practice, if the integrand is quite peaked, it 
may make sense to assist the integration by first using a density estimation al- 
gorithm to form an easily sampled estimate of q:(x , ) .  Numerical integration via 
importance sampling can then be used with that estimate as the proposal dis- 
tribution to do the integration. Assuming the peaks of qf(z,) roughly matches 
those of E,t-i(ln(FG) I xz), such integration should be relatively efficient. 

Given our assumed ability to evaluate qf-l(x,) Vx,, we can similarly use our 
supervised learning algorithm and numerical integration to estimate E,t-l (h(FG)), 
again using density estimation if need be. Alternatively, we can estimate Eqt-i (ln(FG)) 
simply by averaging the values in the training set of ln(FG) .ll 

iv) Similarly, we can use numerical integration to estimate dx, ln(qf-'(z,)). 
and/or S(4t-l). A simpler approach to estimating the entropy, analogous to the 

'OThose last four arise in calculating the additive const term in one or the other of the 
update rules, and where needed implicitly assume a priori bounds on their integrals. Note 
that any multiplicative const terms are irrelevant, since as described above they cancel out in 
the subsampling. 

"It probably makes most sense to do this if our supervised learning algorithm is one for 
which we're a priori guaranteed that such averaging gives the same answer as numerical 
integration. 



. ’  

. 
averaging process of step (iii), is to simply estimate the entropy as the empirical 
average of the values of ln[qi(zi)] over the Monte Carlo samples. 

Doing all this, we can evaluate every term that arises in our subsampling 
procedure. This allows us to sample qt. For the next iteration, this ability to 
sample qt is used again, this time to do part (1) of the subsampling procedure 
for generating samples of qt+’. To perform parts (2) and (3) we need to eval- 
uate the update ratio, and therefore must be able to perform (some subset of) 
steps (i) through (iv) above. Since by hypothesis we can evaluate q t - l ( z )  for 
any z, and can evaluate the update ratio rqt-1,%(z%) (up to irrelevant propor- 
tionality constants) for any such z,, we can evaluate qt(z) for any z Therefore 

Monte Carlo samples of qt. Therefore we can perform parts (2) and (3)  of our 
subsampling procedure. So we can generate a sample of qtf l .  

we canperform step (i). -We c m  also perform steps (ii) through (iv) using the - . . - - - - 

4 Conclusion 

A longrunning difficulty with conventional game theory has been how to m o m  
it to accommodate the bounded rationality characterizing all real-world play- 
ers. A recurring issue in statistical physics is how best to approximate joint 
probability distributions with decoupled (and therefore far more tractable) dis- 
tributions. It has recently been shown that the same information theoretic 
mathematical structure, PC, underlies both issues. This structure provides a 
formal model-independent defmition of the degree of rationality of a player and 
of bounded rationality equilibria. This pair of papers extends previous work on 
PC by introducing new computational approaches to effectively h d  bounded 
rationality equilibria of common-interest (team) games. 
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